
XtCreateWidget, XtVaCreateWidget, XtCreateManagedWidget, XtVaCreateManagedWidget,
XtDestroyWidget − create and destroy widgets

Widget XtCreateWidget(name, widget_class, parent, args, num_args)
String name;
WidgetClasswidget_class;
Widget parent;
ArgList args;
Cardinal num_args;

Widget XtVaCreateWidget(name, widget_class, parent, ...)
Stringname;
WidgetClasswidget_class;
Widgetparent;

Widget XtCreateManagedWidget(name, widget_class, parent, args, num_args)
Stringname;
WidgetClasswidget_class;
Widgetparent;
ArgList args;
Cardinalnum_args;

Widget XtVaCreateManagedWidget(name, widget_class, parent, ...)
Stringname;
WidgetClasswidget_class;
Widgetparent;

void XtDestroyWidget(w)
Widgetw;

args Specifies the argument list to override the resource defaults.

name Specifies the resource name for the created widget, which is used for retrieving resources
and, for that reason, should not be the same as any other widget that is a child of same
parent.

num_args Specifies the number of arguments in the argument list.

parent Specifies the parent widget.

w Specifies the widget.

widget_class Specifies the widget class pointer for the created widget.

... Specifies the variable argument list to override the resource defaults.

The XtCreateWidget function performs much of the boilerplate operations of widget creation:

g Checks to see if the class_initialize procedure has been called for this class and for all superclasses
and, if not, calls those necessary in a superclass-to-subclass order.

g Allocates memory for the widget instance.

g If the parent is a subclass ofconstraintWidgetClass, it allocates memory for the parent’s constraints
and stores the address of this memory into the constraints field.

g Initializes the core nonresource data fields (for example, parent and visible).

g Initializes the resource fields (for example, background_pixel) by using the resource lists specified for
this class and all superclasses.

g If the parent is a subclass ofconstraintWidgetClass, it initializes the resource fields of the con-
straints record by using the constraint resource list specified for the parent’s class and all superclasses
up to constraintWidgetClass.



- 2 -

g Calls the initialize procedures for the widget by starting at theCore initialize procedure on down to
the widget’s initialize procedure.

g If the parent is a subclass ofcompositeWidgetClass, it puts the widget into its parent’s children list
by calling its parent’s insert_child procedure. For further information, see Section 3.5.

g If the parent is a subclass ofconstraintWidgetClass, it calls the constraint initialize procedures,
starting atconstraintWidgetClasson down to the parent’s constraint initialize procedure.

Note that you can determine the number of arguments in an argument list by using theXtNumber macro.
For further information, see Section 11.1.

The XtCreateManagedWidget function is a convenience routine that callsXtCreateWidget and
XtManageChild .

The XtDestroyWidget function provides the only method of destroying a widget, including widgets that
need to destroy themselves. It can be called at any time, including from an application callback routine of
the widget being destroyed. This requires a two-phase destroy process in order to avoid dangling references
to destroyed widgets.

In phase one,XtDestroyWidget performs the following:

g If the being_destroyed field of the widget isTrue , it returns immediately.

g Recursively descends the widget tree and sets the being_destroyed field toTrue for the widget and
all children.

g Adds the widget to a list of widgets (the destroy list) that should be destroyed when it is safe to do so.

Entries on the destroy list satisfy the invariant that if w2 occurs after w1 on the destroy list then w2 is not a
descendent of w1. (A descendant refers to both normal and pop-up children.)

Phase two occurs when all procedures that should execute as a result of the current event have been called
(including all procedures registered with the event and translation managers), that is, when the current invo-
cation ofXtDispatchEvent is about to return or immediately if not inXtDispatchEvent.

In phase two,XtDestroyWidget performs the following on each entry in the destroy list:

g Calls the destroy callback procedures registered on the widget (and all descendants) in post-order (it
calls children callbacks before parent callbacks).

g If the widget’s parent is a subclass ofcompositeWidgetClassand if the parent is not being des-
troyed, it callsXtUnmanageChild on the widget and then calls the widget’s parent’s delete_child
procedure (see Section 3.4).

g If the widget’s parent is a subclass ofconstraintWidgetClass, it calls the constraint destroy pro-
cedure for the parent, then the parent’s superclass, until finally it calls the constraint destroy pro-
cedure forconstraintWidgetClass.

g Calls the destroy methods for the widget (and all descendants) in post-order. For each such widget, it
calls the destroy procedure declared in the widget class, then the destroy procedure declared in its
superclass, until finally it calls the destroy procedure declared in the Core class record.

g Calls XDestroyWindow if the widget is realized (that is, has an X window). The server recursively
destroys all descendant windows.

g Recursively descends the tree and deallocates all pop-up widgets, constraint records, callback lists
and, if the widget is a subclass ofcompositeWidgetClass, children.

XtAppCreateShell(3Xt), XtCreatePopupShell(3Xt)
X Toolkit Intrinsics− C Language Interface
Xlib − C Language X Interface


